Lecture 2: Identifying Carbonyl Groups using Spectroscopy

Objectives:
By the end of this lecture you will be able to:

« use “C-NMR spectra to differentiate between the C=0 group in a ketone/aldehyde and one
in a carboxylic acid derivative;

» use IR spectra to identify different C=0 groups in an organic molecule.

Recommended Reading: Spectroscopic Methods in Organic Chemistry, D. H. Williams and |.
Fleming, McGraw-Hill, Currently in 5th Edition.

Introduction

When carrying out synthetic transformations it is obviously important to be able to identify the
products that you make and elucidate their structure. A variety of spectroscopic techniques are
available for carrying out this task; NMR spectroscopy is the most important for organic
chemistry. It is possible to obtain NMR spectra of all nuclei that are spin active. For organic
chemists the most important nuclei are 'H, °C and to a lesser extent '°F and *'P. We will only
look at ">C-NMR spectra and see how it can be used to identify the presence of a carbonyl group
in a molecule. IR spectroscopy is an older technique and generally less informative than NMR
spectroscopy. However it remains a quick and easy method for identifying the types of C=0

groups present in a molecule.
*C-NMR Spectroscopy

®C-NMR as a Technique for Structure Elucidation

The most common naturally occurring isotope of carbon is '2C. This nucleus is not spin active
and therefore cannot be used in NMR spectroscopy. The most abundant spin active (I = 1/2)
nucleus of carbon is ">C which has only 1.1% natural abundance. To put this into context, if an
organic molecule contains 100 carbon atoms, on average only one of these will be 3¢ and
therefore spin active. This very low natural abundance has important ramifications for using c

NMR spectroscopy as a tool in structure elucidation:

1. Amount of sample required: ">C-NMR is a relatively insensitive spectroscopic technique.
Compared with the amount of material (typically 1-10 mg) needed to obtain a 'H-NMR

spectrum of a molecule (remember that 'H has ~100% natural abundance), far more



(typically 50-100 mg) is needed to obtain a decent ®C-NMR spectrum of the same

molecule.

"8C-NMR spectra are normally recorded proton-decoupled: Coupling of '>C nuclei to
proximal 'H nuclei causes the singlet resonances of 3C nuclei to split into more than one
peak. This has the effect of reducing the intensity of the resonance, which is undesirable

bearing in mind the insensitivity of the technique.
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As a result, ’C-NMR spectra are normally recorded as proton-decoupled spectra. This removes

the effects of peak splitting resulting from coupling to proximal protons. To obtain a proton-

decoupled spectrum, the sample is irradiated across the range of frequencies at which proton

nuclei resonate whilst recording the ">C-NMR spectrum. The net result is to remove the effects of

coupling between these protons. 3C resonances therefore appear as singlet resonances. in

proton-decoupled spectra.

n.b.

n.b.

The likelihood of a single molecule containing two ">C nuclei bonded closely enough to
one another for them to couple to one another, is very low. Splitting of resonances as a

result of homonuclear C-C coupling is therefore negligible.
Coupling to other nuclei e.g. '°F and *'P is usually not suppressed.

Integration of "SC-NMR spectra is generally not possible: Under normal circumstances it
is not possible to use the relative intensity of 3C resonances to measure the number of
C-atoms resonating at that frequency i.e. the number of C-atoms in that specific
environment in the molecule. This is in sharp contrast with '"H-NMR spectra where it is
possible to obtain quantitative data about the number of H-atoms in a given resonance by
integrating the area of the resonances.



Reason: When recording 'H-NMR spectra, all the 'H nuclei have relaxed back from their excited
states to their ground states before the next radio frequency pulse is made; thus all nuclei receive
the same number of pulses and give out the same number of signals. ®C nuclei take quite
different times to 'relax’ back to their ground states. The rate of relaxation for a 3C nucleus
depends on a number of factors although the number of H atoms to which it is bonded is the most
important. Significantly quaternary carbons (i.e. those which have no H atoms bonded to them)
relax very slowly and usually too slowly for all the excited nuclei to have relaxed back to the
ground state before it is time for the next radio frequency pulse. The net result is to reduce the
number of nuclei which can be excited in this next pulse leading to a decrease in the intensity of

the resonance.

The resonances of quaternary carbons (including those found in C=0 groups) are invariably the
weakest in the spectrum. This observation can be a good method for identifying quaternary

carbons (although it should NOT be relied upon).
®C-NMR Spectra

¥C-NMR spectra are normally recorded across the range 0-210 ppm with the carbon resonance
in tetramethylsilane (Me,Si) appearing at 0.0 ppm as a reference. The position of a resonance is

strongly dependent on the environment in which the resonating nucleus finds itself.

» Electron-withdrawing groups tend to shift resonances downfield (i.e. to higher ppm value).
» Electron-donating groups tend to shift resonances upfield (i.e. to lower ppm value).
» Anisotropic effects are important particularly for aromatic carbons and carbons in unsaturated

functional groups (e.g. C=0 groups and double bonds).

We can divide the "*C-NMR spectrum into four regions to obtain a rough guide of the type of

carbon nuclei that resonate in each region:
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Carbon resonances from carbonyl groups appear

in the 160-210 ppm region.

This region can be further divided:

Carbon resonances from ketones and aldehydes generally appear in the 190-210 ppm

region, more or less irrespective of the side-chain substituents.

Carbon resonances from carboxylic acid derivatives (amides, esters, carboxylic acids,

acid chlorides etc) generally appear in the 160-185 ppm region.
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IR Spectroscopy

Molecules are not static entities; quite the opposite in fact, they are always moving: bonds
lengthen and shorten, bend, rock and wag. These vibrational modes of movement can be
associated with a particular functional group or associated with movement of the whole molecule.
The energy required for these molecular vibrations corresponds to that found in the IR-region of

the electromagnetic spectrum (i.e. relatively low energy).

Functional groups tend to have associated molecular vibrations that appear at characteristic
positions in IR spectra. IR-spectra therefore provide a very useful method for identifying what
types of functional groups are present in a molecule; they are generally not used to provide much

more information than this.

The location of a particular functional group vibration in a spectrum depends on a number of

factors.

e The strength of the bond and its reduced mass. To a first approximation the stretching
vibration of a bond can be assumed to behave like a simple harmonic oscillator; thus the

frequency is related to the strength of the bond and the reduced mass:

From this relationship, we would predict that the stronger the bond, the higher is the frequency of

bond vibration.

i.e. triple bonds appear at higher frequencies than double bonds and double bonds appear

at higher frequencies than single bonds.

A consequence of the small mass of Hydrogen means that all bonds of the form X-H have
stretching vibrations at high frequency. (Reduced mass for C-H bond: 12/13 = 0.92; c.f. reduced
mass for a C—C bond: 144/24 = 6).



» the mode of vibration is important: stretching vibrations tend to appear at higher frequency

than bending vibrations.

An IR spectrum can be divided into a number of regions defined by the characteristic stretching

vibrations found within each region:
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For our purposes we are interested in the C=0 stretching region which extends from 1650 cm™” to
1900 cm™. As we saw in Lecture 1, the difference in electronegativity between oxygen and
carbon polarises the electron density in the functional group creating a strong dipole moment
across this bond. Since the intensity of a vibrational band is dependent on the change in dipole

moment, C=0 stretching bands are normally some of the most intense bands in an IR spectrum.

C O c————oO C @)
bond contracting average bond bond stretching
length

The Carbonyl Stretching Band

The substituents either side of the carbonyl group affect the exact position of this vibrational
band.

We shall take the stretching frequency of a dialkyl ketone (e.g. acetone) as a central reference.

C=0 peak at 1715 cm™
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Conjugation shifts the band to lower frequency. This may be attributed to the bond

having more single bond character (see the resonance forms below):
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* Ring Strain (3-5 membered rings) shifts the C=0 stretching peak to higher frequency:

There is relatively little ring

strain in a 6-membered ring.

C=0 peak at 1716 cm™
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of around 30 cm™.
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Removing another CH;, group produces cyclobutanone and a further increase in ring strain and

therefore a shift of around +65 cm™ to higher frequency.

C=0 peak at 1785 cm™".
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Cyclopropanone is a highly strained molecule (and not surprisingly very reactive). The high
degree of strain causes a shift of around +100 cm™ to high frequency. C=0 stretch appears at
1815 cm’™.

» The more electronegative the substituent in RC(0O)X, the greater is the shift to higher

frequency. This is an inductive effect operating through the o-framework.

» This effect is countered by the electron-donating effect of heteroatoms operating
through the T=framework, which causes a shift to lower frequency. As to which effect

prevails depends on the substituent.
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Some more examples:

(E, E) 2,4-hexadienoic acid
NN OH
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/ﬁ\ acetyl chloride
Cl
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Summary

There are a wide variety of functional groups containing a C=0 group. We therefore need to be

able to identify and distinguish these when elucidating the structure of a molecule.

Using C-NMR spectroscopy we can easily identify whether a molecule contains a C=0 group by
checking whether there is a resonance (often relatively weak in intensity) above 160 ppm. C=0
groups in ketones and aldehydes generally appear above 190 ppm so we can often distinguish
this type of C=0 group from those found in carboxylic acid derivatives, which appear further
upfield (160-185 ppm).

It is also very easy to identify a C=0 stretch in an IR spectrum as the stretching peak is normally
very intense and comes in a relatively small region between 1650 cm™ and 1900 cm™. The exact
position of the stretch depends on a number of factors (conjugation, ring strain, inductive effects);
thus it also often possible to infer what type of C=0 group is in the molecule. Caution needs to be
exercised here as different effects shift the stretching band in different directions (conjugation

shifts to lower frequency; -/ inductive effects and ring strain shift to higher frequency).



